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Swirling flow boundary layers 

By G. F. CARRIER 
Harvard University 

(Received 18 November 1970) 

The modified Oseen method is extended to provide a description of the boundary 
layers which accompany certain swirling flows over a rigid boundary in a rotating 
container. By comparison with known results it is shown that a refined procedure 
has errors of the order of 1 % when the inviscid flow is a rigid body rotation; it is 
anticipated that, for the more interesting flows, the error is of the order of 30 %. 

1. Introduction 
In order to pursue successfully the study of the dynamics of intense storms 

one needs a convenient and reasonably accurate scheme for the calculation of 
the time-dependent flow in the boundary layer which lies between an essentially 
inviscid, intensely swirling flow and a rotating rigid boundary. Numerical pro- 
cedures can be (and have been) used with some success but it is hard to deter- 
mine whether some of the features of the description of the flow so obtained are 
real or whether they are artifacts of the computational technique. Here, we evolve 
Oseen-like treatment of such flow fields; the details of the technique differ 
markedly from those which have been used on other flow configurations. It pro- 
vides very useful results which seem to be very accurate. 

2. Steadyflow 
Suppose that the steady horizontal velocity components of the inviscid flow 

in which we are interested are given by U = 0, P = V(r) ,  in rl < r < ro with 
V(ro)  = 0 and with rl/ro < 1. Suppose also that the boundary layer which lies 
between this flow and the rigid boundary at x = 0 is steady and that the vertical 
component of velocity in the inviscid flow is that which is implied by the 
dynamics of the boundary layer. That is, if w(x,z) is the vertical velocity in 
the boundmy layer and W ( r )  is that in the inviscid flow, then 

W ( r )  = w(r,m). 

The equations implying the conservation of momentum and of mass for an 
axially symmetric boundary-layer flow can be written in the form 

uu,. + wu, - (v2/r)  - 252v +p-lp,. = vuzz, 

U(TV),. + w(rv), + 252(m) = v(rV)zz, 

rw, + (ru),. = 0, 

(2.1) 

(2.2) 

(2.3) 
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where i22 denotes the angular velocity of the container, v is the kinematic 
viscosity of the fluid; (u,v,w) is the velocity and r,  z are the co-ordinates. 
Horizontal diffusion of momentum is ignored. The pressure, aside from the 
hydrostatic effects of gravity, is given by 

p-p, = V2/r+2i2V7. 

The arguments which underlie the scheme to be used are these: equations 
(2.1), (2 .2 )  and (2.3) imply a balance between the vertical diffusion of angular 
momentum, the contribution of the Coriolis acceleration to the angular momen- 
tum flux, and the convection of angular momentum. It is known (Lewis & 
Carrier 1949) that in such balances one can frequently replace the details of the 
description of the convective mechanism by a simpler description which has the 
same over-all effect. In particular, one can frequently do this with a convective 
term which is linear in the velocity components. The advantages which accrue 
when a linear approximation can be used are self-evident. 

In (2.1), the radial momentum balance is implied. There, convection, 
centripetal acceleration, Coriolis acceleration, diffusion, and the known pressure 
gradient enter the balance. The convection mechanism and the centripetal 
acceleration provide the non-linear contributions and it is only natural to try to 
extend the foregoing idea by replacing uu,, + wu, - v2/r by an appropriate linear 
approximation. 

Unfortunately, a universal replacement recipe does not serve our purposes. 
There may be one, for all I know, but it is not conveniently found; neither 
would it be particularly convenient to use. Accordingly, we will adopt the idea 
in different ways for different illustrative examples. The first example is chosen 
because the results are so simple and because they can be checked against very 
accurate knowledge which is already documented. Thus, it provides a test (but 
not a very severe one) of the method and it is interesting in its own right. The 
second example involves the configuration we need to understand in connexion 
with the severe storm problem and it provides insight for the large family of 
flow configurations in which a v p r  < 0. 

3. Solid body rotation 
It is our purpose in this section to find and to rationalize the simplest approxi- 

mation for the convective process which gives an accurate description of the 
boundary layer under the flow, 

U ( r )  = 0, V ( r )  = pr,  in 0 < r < co. 

For this flow (and for many others) it is easy to anticipate that 

2) = W )  F(r, 4, 
where P is of order unity and F(r, 00) = 1. Alternatively, one could also anticipate 

~ ( r ,  Z) = V ( r ) .  G(r, z), that 

where Gis of order unity, but one would bet less enthusiastically that in an Oseen- 
like process, G could be approximated by unity for all r and z than one would 
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that P could be replaced by unity. Accordingly,in (2.2), we replace u(rv), + w(rv), 
by u(rV),. Ordinarily, when one uses such a scheme, this term is replaced by 
C(r)  (rv), where C(r )  is chosen apostieri using some gross conservation criterion. 
Here, however, we are guided by (a) the fact that the ordinary differential equa- 
tion to which this leads is much easier to deal with than the partial differential 
equation to which the conventional procedure leads; (b)  the hope that the bound- 
ary layer is primarily locally controlled as in the linear situation; (c) the fact that 
it is easier to guess a good approximation to the average size (and influence) of 
(rv), than of u; and (d) the fact that our objective is to find the simplest possible 
scheme for the calculation. 

Equation (2.1) can be rewritten in the form 

+ 2Q( V - v )  = "U2,. (v + v )  ( v- v )  
uu, + wuz + 

r 

Here it is convincingly plausible that the centripetal acceleration is much more 
important than convection so, aided again by the foregoing arguments (a) ,  (b) ,  
(c), (d) we write 

Thus, (3.1) and our replacement of (2.2), i.e. 

vu,, = -2(Q+ V/ r )  (v- 7). (3.1) 

v[r(v- V ) ] ,  = 2Q+-(rV), ru, (3.2) I r  l l  

are the equations to be solved for u and v. Thus far, no argument has depended 
on the choice V = pr. Using that choice now, we have 

8"[# + i$I, = i (Q +A [$ + i$l, (3.3) 

where q5 = ru, and $ = r (v-  V) .  

#+i$ = -ipr2exp 

" 1  

o r  

Thus 

Equation (2.3) implies that 

w(r,co) = -1 -4,dz 

(3.4) 

One can compare this result with that found by Rogers & Lance (1960), 
noting that p + SZ is their o. The inaccuracy at large swirl speeds is of the order of 
30 yo. 

The refinement which greatly improves this result stems from the hypothesis 
that we have not really allowed the wvz convective contributions to be felt. 
Accordingly, we now replace (2.1) and (2.2) by 

4$ + wzz- a($ + i$l2 = 2i(Q +PI ($ +w, (3.6) 

where a represents some appropriate average of w. 
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The quantity, 4 + i$, now has the form 

# + i$- = - i,i+e--kZ, 

where 

Thus w(r,co) = __ Q+p [(A 2 ([ $ + 4(Q +p)2 v.1" + p))f+ 4 .  (3.7) 

Since a was to be an appropriate average of w, (3.7) can be regarded as an equation 
for w(r,  00) and we take? a = +w(r,co). 

The values given by (3.7) with a = +wm a.re very good indeed (see table 1) and 
so is the location of the zeros of 9 and $-. (See Lance & Rogers 1960.) 

Thus, this analysis certainly suffices for the rigid body rotation problem but the 
test is not a critical one. The exact solution for (9 + i$)/r2 is independent of 
r ,  w is a constant (for a given p)  and it is clear tha,t more subtle difficulties might 
arise in more intricate problems. 

w(r, 001, w0-9 a), 
Q/(fi +Y) this study Lance & Rogers 

1 0 0 
0.81 0.2 0.2 
0.63 0-4 0-39 
0.33 0.8 0.83 
0 1.4 1-37 

TABLE 1 

4. The flow with rV = A(l  -r2/$) 

problem in which 
The procedure which led to (3.1) and (3.2) can be applied without change to the 

Y = rV = A(1- (rz/r:)) ,  U = 0, in rl < r < r, 

with u(ro, z )  = v(ro, z )  = 0. Instead of leading to (3.3), i t  leads to the differential 
equations 

(4.1) qbZZ = - 2( Q +'r/r2) 4, 
V$z* = 2(Q+ (l/W'rA 9. (4.2) 

(4.3) 

where N 2  = (Q+Y/rz)/(Q+Y,/2r) (4.4) 

and h4 = ( Q + Y / r 2 )  (Q+Yr/2r). (4.5) 

These imply that 9 + iN$ = - iNY! exp [ - (2i/v)3 hz],  

It then follows that 

t To see that one knows +wm is a good average, try the simple example w,,-wwZ = 0, 
with w(0) = 0, ~ ( c o )  = - 1. 
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That the result is completely unreasonable for small r is easy to discover. Accord- 
ing to (4.3), with z1 = n(v/2h)J, 

$(r, zl) = - N Y e +  

and this gets much larger than Y as r gets small. 
One might imagine that this could again be attributed to the omission of the 

w $ ~  and w @ ~  terms but such is not the case; if one carries out the refinement of 
$ 3  for this configuration, the result is still unreasonable (i.e. the analysis still 
predicts $/Y 9 1). The fault lies in our convective approximation in the radial 
momentum equation. When the equation is written in terms of # and @ i t  has 
the form 

where @ still denotes r(v - V ) .  
We can expect $ to change with r in proportion to Y so that, for small r, 

but 

The results of (4.3) allow the omitted term to be bigger than each of the 
terms we retained in that equation; thus, if the results are to be useful, it becomes 
clear that, in an improved procedure, we must retain a suitable approximation 
for #"r2 in the linearized form of (4.7). It also seems clear that, as r gets small, 
(2Y + q?) @ + q5"r2 must remain reasonably small except near z = 0 where i t  
cannot do so because of the boundary condition. Physically, this suggests that, 
at small r/ro, there will be a frictionally controlled flow very close to z = 0 but, 
in the outer part of the boundary layer, the radial momentum balance will be 
one in which friction plays no role but in which 

(2Y+@)@+$2210. 

That is, the outer part ofthe boundary layer will be governed by a balance among 
centripetal acceleration, pressure gradient and radial convection of momentum. 

To reflect this in the mathematics, we write instead of (4.7) 

v$zz = - 2(52 +DY/r2)  + (C" / r2 )  $. (4.8) 

We will choose the positive constants, C, D when we have found $ and can require 
internal consistency of the result. 

We must now solve (4.2) and (4.8). We write 

2 = $+P$-, (4.9) 

(4.10) 

and combine (4.2) and (4.8) in the form 

v[$, -t pllrzz-j = - 2 ( n  + D Y ~ )  4 + rcyp + 2p(n + (1/2r) YJI $. 
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i.e. P =  9 (4.11) 
- W / r 2 +  [C2Y2/r4-  16(Q+(1/2r)Yr) (!2+DY/r2)]h 

~~ 

4(Q + (1/2r)yr) 

and 
- 2( Q + DY/r2 )  

P-' 
a2 =[CY/r2+2P(~+(1/2r)Y,) ]  = (4.12) 

Two extremes are of immediate interest. When Y / r 2  is small enough, 
(1 - rZ/rg < l), both values of P are nearly imaginary. In fact, one is the conjugate 
of the other and the same pair of functions $, $ is obtained which ever value 
of /3 is used. This solution corresponds closely to the linear Ekman layer and 
to the boundary layers of $3. 

At the other extreme, when Y/r2is large enough (small r/r0), there are two real 
roots, P, one much larger than the other. In  fact 

and 

so that (ignoring S2 compared to Y / r 2 )  

a, N - [4( R + (1/2r) Y,) D/C]&, 

a2 N - ( W / r ) * .  

(4.13) 

(4.14) 

(4.15) 

(4.16) 

Since $+A@ = AlexP[alz/v% 

$+P& = A,exP[az~ l~~ l ,  

where A ,  and A ,  must be determined, we invoke the fact that $(r, 0) = 0 to  obtain 

and we use 

to obtain (4-A2) /031-P2)  = -y7 

'1'2 ~ ( e x p  [alz/v#] - exp [a2z/uil) ,  (4.17) so that 

and @ = -wPlexP ralz/V%l -PzeXP[~2~/~~1)/(/31-P2). (4.18) 

Note now that, since 2DY@ was used to approximate (2Y + 9) $ we can now 
require that, in the inviscid region of the boundary layer, 

$ = P 1 - p 2  

In the inviscid region (which is most of the z domain for small r )  

Thus, 

$ 2 1  -Y exp [a,z/u~]. 

2( 1 - D)Y2/a1 = Y2/2a1, (4.20) 
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i.e. D = Q. (4.21) 

It then follows that, in the inviscid region 

u2+v2 1: v2 (4.22) 

is a better approximation to rj than the description given by (4.17). However, 
we do not really care about the details of rj except in their effect on w(T,w).  
Accordingly, we choose C so that the inviscid contribution to w, as given by 

w(r,oo) = -- - 
r a r  

is the same whether 4' is the inviscid part of 4 as given by (4.17) or that implied 
by (4.22). 

(4.23) 

Hence x2 = SY [ ( 2  - exp [a,x/v*]) exp [a,z/v*]]* dz = (8;. + l)Y/al 
- a1 

md,  since Pz N - (2D/C) 

Thus, with D = Q ,  C = 3, and 

c = 3/(;.-!- 2) 21 2. 

(4.17) and (4.18) describe a, flow whose important features are those of the real 
flow. In  particular, they describe a flow in which fluid which is affected by friction 
at large r gradually emerges into a region in which the control is inertial but where 
the dynamics are still very important in the determination of w(r,  a). For this 
flow, i.e. for + = A(  1 - r2/r t ) ,  one can readily infer that w(r, co) varies very slowly 
in r and that, when A = ar$ /20  (thegeophysically interesting case), the downdraft 
from the outer flow in ri > r2 > r$/25 is well approximated by 

Alternatively, for very small r,  
A 
YO 

w(r, 00) N - 2(5/4)iX (via)-$. 

Hence, even under the intense part of the swirl, w(r, 00) is only twice as large as 
it is in the more slowly moving air.? 

t Note added in proof. There is an algebraic error in this calculation of w(r, m) for 
small r which was noticed by J. McWilliams. The correct result is w(r, m) N r--l(vY/C)*, 
which implies that thevertical convection of momentum must play an even more important 
role for small r than it did in the problem of 93. McWilliams will publish in due course 
an account of this re6nement of the analysis, but we anticipate his results here only to 
the extent of assuring the reader that it restores the general conclusion reached in this 
paper. That is, the downdraft for this phenomenon in r,,/50 < r < r,, is dominated by the 
linear result w(r, co) 21 -Ar,2(v/L2)*, and the use of this fact and the related results of 
§j5,.6 in the succeeding hurricane paper is justified. 



140 G. F .  Carrier 

In  the absence of accurate information concerning the validity associated 
with the choice of an eddy viscosity, v, or accurate estimates of its value, further 
refinement of the foregoing model and the understanding it provides would be 
hard to justify for phenomena involving turbulent flow. 

5. A time-dependent flow: linear analysis 
Let the inviscid flow in R(t) < r < robe that for which 

r2 - r2 
ro - R2(t) ' Y = Q[R$ - R2(t)]  -2L 

where Y = rV(r , t ) .  

The radial velocity, U(r ,  T ) ,  which accompanies this flow, in the inviscid region, 
must be such that the angular momentum of each particle is conserved and 
such that U(R(r), t )  = I? and U(ro, t )  = 0. That radial velocity is given by 

r; - r2 
r$ - R2(t) ' Q = R(t)R(t)  

where Q(r, t )  = rU(r ,  t ) .  

The low Rossby number (Q2+Y2 < Q2R4) equations for the viscous layer are 

Vdm - dt = - 2Q$-, 

V1c.m - 1c.t = 2QA 

where 

i.e. 

9 = T"T, z ,  t )  - wr, t)l, 11. = r[v(r, z ,  t )  - V(r,  t ) ] ,  

v($ + ilc.)zz- (4 + i$)t = 2Qi(q5 + i1c.p). 
One can use transform methods to find q5 + i$ with 

q5+i$+-(@+iY) on z = O  

and $ + i @ + O  as z+m, 

(5.3) 

where R(t)is any reasonable function oft. Our purposes are served, however, by 
studying the case where R$ - R2 = R$eat and where r$ - R2 is so close to r$ that its 
time variation can be ignored. Under these conditions 

Y N QR$eat(l - r2/r$)  = Yoeat, (5.4) 

Q, N - &xRgeat(l -rZ/r:) = Qoeat. 

q5 + i$ = Xeat, For this case 

and (5.3) becomes vxz, = (a + 2Qi) x, (5.7) 

x = - (Qo+iYo) exp [ -z{(cc+ ZQi)/v}*]. (5.8) so that 

The vertical velocity can be written as the sum of two items. One is associated 
with the inviscid flow and is given by 
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The other, w(r, x ,  t), is associated with the boundary-layer flow, as given by 4 
and @. This contribution is the one which is related to the amount of fluid which 
(in the boundary layer) flows radially through the moving cylindrical surface, 
r = R(t). . .  

Thus, (with w = W(r,  x )  eat) 

r ar 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

a/ D 

FIGURE 1. W versus a for Y' = !2Rieat 

and, in particular 

i a  
= Re ar (ao + iYo) [v/(a + 2Qi)]4 

(5.10) 

where p = {a2 + 4Q2}*. 

The foregoing result, in which W is less negative with cc > 0 than it is with 
a = 0, is a consequence of two effects (see figure 1). One effect is associated with 
the delayed growth of the boundary layer but an equally important effect is 
associated with the fact that W(r, 00) depends on the amount of fluid which the 
boundary layer ejects to (or receives from) the region in r < R(t). When is 
negative, the profile of u as a function of z looks like the sketches of figure 2. 
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When U is large enough compared to V ,  the amount of ejected fluid may actually 
be negative as depicted by the curve labelled u2 but, when I&[ is small enough 
compared to V ,  there will be a positive ejection rate. Thus, the second effect 
(a diminution of W )  is merely associated with the frictional diminution of the 
inviscid radial velocity component. 

FIGTJRE 2. Boundary-layer velocity profiles ulr u2, at r = R(t) 
for two different values of U .  

In  figure 1 we plot W(r, co) (which actually does not vary with r )  versus a, 
the parameter which characterized the relative size of @ and Y. Note that, for 
a: > 7/6Q, W(r,  co) is positive. Thus, any phenomenon which involves the swirling 
flow studied in this section and which requires that there be a flux of fluid radially 
inward across the surface at P = R(t) must have a time scale whose order of 
magnitude cannot be shorter than QF1. 

6. Intense time-dependent flows 
When Q2+Y2 is not small compared to Q2R4, the foregoing linear analysis 

may not suffice. Once again, however, we can use the ideas of Q 4 in connexion with 
the time-dependent conservation equations to  obtain 

v& - #t = - 2( Q + DY/r2) @ + (CY/rz)  9 (6.1) 

and v$-#z-$-t+22(Q+ (1Pr)Yr) 6 (6.2) 
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Furthermore, we can try again to find a combination, x = q5 +/3$, for which 

(6.3) 

(6.4) 

(6.1) and (6.2) collapse into the form 
2 

vxss- xt = a x- 

a2 = 2P(Q + (1/2r)Y,.) + C(Y/r2), 

Equation (6.3) is consistent with (6.1) and (6.2) onlyif 

and -a2/3 = 2(8+DY/r2)+/3t, (6.5) 

so that /3t+C(Y/rz)+2/32(Q+ (l/r)Y,.) = -2(Q+DY/r2).  (6.6) 

When CD is not larger than Y anywhere in the domain, one should retain quite 
reasonable accuracy by choosing C = 2 and D = 2 as in the steady case. Then, 
depending on the time dependence of Y, one can solve (6.6) for /3 by, a t  worst, 
a simple forward-in-time numerical integration scheme and one can then use 
(6.5) tofinda2. 

With a2 known, and for values of r at which /3 is complex, one can solve (6.3) by 
writing 

so that VYss - Y t  = 0- (6.8) 
Since y is known at z = 0 in terms of fD, Y, and /3, we can then use the Laplace 
transform technique (with 

T j  = e-stydt 
03 

0 
and with y(O,r , t )  = 0) to obtain 

(6.9) 
F(T, a, s) is related to the integral of B over z in a relatively simple way and one 
can obtain a convolution integral for W(T, co, t). All of this is very simple in prin- 
ciple but the details are likely to be a mess. For values of r at which /3 becomes real 
with increasing t ,  both branches of /3 must be identified (calculated) and x will 
be a linear combination of the appropriate solution of (6.3) with /3 = Fl and of 
(6.3) with ,8 = Bz. For such r and t the procedure will be even messier than that 
for complex /3. Thus, in the absence of any compelling reason to choose a different 
illustration, we work out here only the details of the particular problem which led 
usinto this study. It is the flow described in $ 5  with R, < r0/5, Rl/10 < R ( t )  < R,, 
01 = O(Q), and we confine our attention to the region in r 2 R,. 

In  the steady state version of this problem, C plays no significant role in r > R, 
and, in particular, pis complex. More important, the coefficientsin (6.1) and (6.2) 
change by so little over the entire domain (in r and t)  that the linear analysis is 
clearly much more accurate than is consistent with our lack of knowledge of the 
eddy viscosity v whichmust be adopted in any large scale problem. Thus, the ana- 
lysis of this problem is already contained in 9 5 and no further details are needed. 

Note that the efflux of fluid across r = R(t) is also accurately given by this 
analysis even though the details of the flow have not been studied inR(t) c r c R,. 
This follows merely from the fact that the efflux, E ,  is given by 

~ ( z ,  T, s)  = I(O, r, s) exp [ - a(s/v)+]. 
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and that the region R, < r < r, accounts for more than 96% of the region 
R(t) < r < ro from which fluid is being drained. 

There is a delightful anomaly in this result. Despite the fact that, in part of 
the domain, R, < r < r,, the Rossby number becomes as large as lo2, the zero 
Rossby number theory gives a completely satisfactory evaluation of the amount 
of fluid transported radially by the boundary layer. 

In  problems where more meticulous detail is required, the foregoing methods 
will provide, at the very least, an excellent guide-line for the choice of functions 
in terms of which q5 and @ can be described with the help of a Galerkin method 
or some other computational procedure. Without such a guide-line, the functions 
chosen may provide (and already have sometimes provided) descriptions of 
somewhat limited validity and utility. 

This work was carried out with support from TRW Independent Research 
and Development Program. 
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